Bạn bè bốn phương

Tài nguyên dạy học

Hỗ trợ trực tuyến

  • (Nguyễn Thị Thu Hà)
  • (Nguyễn Kim Dung)
  • (Nguyễn Chí Luyện)
  • (Nguyễn Anh Tú)
  • (Nguyễn Thị Hải Yến)
  • (Vũ Mai Phương)

Điều tra ý kiến

Các bạn thầy trang web của chúng tôi thế nào?
Bình thường
Đẹp
Đơn điệu
Ý kiến khác

Thống kê

  • truy cập   (chi tiết)
    trong hôm nay
  • lượt xem
    trong hôm nay
  • thành viên
  • Ảnh ngẫu nhiên

    IMG_20170616_132837.jpg 20170531_142324.jpg 20170531_162119.jpg 20170530_080900.jpg 20170530_081006.jpg SAM_1325.JPG SAM_1327.JPG SAM_1317.JPG SAM_1431.JPG SAM_1433.JPG SAM_1438.JPG SAM_1453.JPG 19021880_1278472815612326_1310854279_n.jpg 19022065_1278472772278997_545768825_n.jpg 19021292_1278472775612330_318724386_n.jpg 20170530_082735.jpg 20170530_083734.jpg 20170530_083544.jpg 20170522_071116.jpg 20170522_091805.jpg

    Thành viên trực tuyến

    3 khách và 0 thành viên

    CHUYÊN ĐỀ "TẬP HỢP"

    Nhấn vào đây để tải về
    Báo tài liệu có sai sót
    Nhắn tin cho tác giả
    (Tài liệu chưa được thẩm định)
    Nguồn:
    Người gửi: Nguyễn Thị Nhung
    Ngày gửi: 18h:30' 11-04-2017
    Dung lượng: 630.5 KB
    Số lượt tải: 0
    Số lượt thích: 0 người
    CHÀO MỪNG QUÝ THẦY CÔ ĐẾN DỰ CHUYÊN ĐỀ
    LỚP: 6c
    Dạng 1: Viết tập hợp, tập hợp con, sử dụng kí hiệu.
    TẬP HỢP
    Dạng 2: Xác định số phần tử của tập hợp.
    Dạng 3: Đếm số chữ số.
    Dạng 4: Các bài toán về cấu tạo số.
    Dạng 1: Viết tập hợp, tập hợp con, sử dụng kí hiệu.
    Dạng 2: Xác định số phần tử của tập hợp.
    KIẾN THỨC CẦN NHỚ
    1.Các cách viết tập hợp?
    2. Số phần tử của tập hợp?
    3. Khi nào tập hợp A là tập con của tập hợp B
    4. Giao của hai tập hợp là gì?
    1. Có 2 cách viết tập hợp: Liệt kê các phần tử và chỉ ra tính chất đặc trưng của phần tử.
    2. Một tập hợp có thể có một phần tử, có nhiều phần tử, có vô số phần tử, cũng có thể không có phần tử nào.
    Tập hợp không có phần tử nào là tập hợp rỗng
    3. - Nếu mọi phần tử của tập hợp A đều thuộc tập hợp B thì tập hợp A là tập hợp con của tập hợp B
    - Nếu và thì A và B là hai tập hợp bằng nhau
    4. Giao của hai tập hợp là một tập hợp gồm các phần tử chung của hai tập hợp đó.
    Bài 1:
    Viết tập hợp A các số tự nhiên lớn hơn 5 và nhỏ hơn hoặc bằng 12 bằng hai cách.
    Bài 2:
    Cho tập hợp A =

    a, Hãy viết các tập hợp con của A có 2 phần tử.



    1.

    2.

    3.

    4.

    5.

    6.
    Không là tập con của A ( vì b A )
    Không là tập con của A (vì 7 A )
    b, Các tập hợp sau có là tập con của tập hợp A không?
    Bài 3:
    Cho tập hợp A =
    B =
    a,Điền các kí hiệu thích hợp vào ô vuông.
    a, 1 A
    b, 1 B
    c, 2 B
    d, B A
    f, B
    e, A
    b, Tìm ?
    Tập hợp sau có gì đặc biệt?
    Chú ý: Tập hợp các số tự nhiên từ m đến n (n > m) là dãy số cách đều ,khoảng cách giữa hai số liên tiếp của dãy là d.
    Công thức tính số phần tử là:

    (n – m) : d + 1
    VD: Tìm số phần tử của tập hợp



    m
    n
    A =
    (n – m) : d + 1
    TRUY TÌM KHO BÁU
    Để tìm được kho báu bạn phải có mật mã,để có mật mã bạn phải tìm được các con số ẩn sau 3 cánh cửa này:
    1
    3
    2
    Nhiệm vụ 1: Hãy tìm số phần tử của các tập hợp sau:
    1
    2
    3
    Tập hợp B các số tự nhiên lẻ có 3 chữ số
    Tập hợp C các số tự nhiên có 2 chữ số chia hết cho 5.
    Nhiệm vụ 2:
    Hãy thực hiện các yêu cầu sau,các số tìm được chính là mật mã:
    Lấy số phần tử của tập hợp A trừ đi 53
    Lấy số phần tử của tập hợp B chia cho 150.
    - Lấy số phần tử của tập hợp C trừ đi 1 rồi cộng 2000.
    8
    2017
    3
    Hãy bấm mật khẩu lên nắp hòm:
    832017
    Tình cảm
    yêu thương của
    người mẹ

    ‘’kho báu ‘’ vô giá
    của
    mỗi người
    8-3-2017
    Bài 2: Một hàng cây được đánh số thứ tự như sau.
    Biết cây cuối cùng mang số 156.
    Hỏi có tất cả bao nhiêu cây?
    3
    12
    9
    6
    .
    .
    .
    Hướng dẫn về nhà:
    - Ôn lại lý thuyết.
    -Bài tập:
    Tính số phần tử của các tập hợp sau:
    a, A=
    b, Tập hợp số tự nhiên lớn hơn 100 và nhỏ hơn 500.
     
    Gửi ý kiến